ВУЛКАН, БУРЯ, БРИЗ, ВОЛНА, МОЛНИЯ, ПРИЛИВ, СКАЛА

УДК 631.445.41:631.95(470.324)

https://doi.org/10.25802/SB.2023.91.87.004

АГРОЭКОЛОГИЧЕСКОЕ СОСТОЯНИЕ ЧЕРНОЗЕМНЫХ ПОЧВ ВЕРХНЕХАВСКОГО РАЙОНА ВОРОНЕЖСКОЙ ОБЛАСТИ ПРИ УТИЛИЗАЦИИ СВИНОГО НАВОЗА

К.С. Насонова К.Ю. Зотова, кандидат экономических наук К.Е. Стекольников, доктор сельскохозяйственных наук ФГБОУ ВО «Воронежский государственный аграрный университет» e-mail:soil@agrochem.vsau.ru; nasonova.kseniy@yandex.ru

Аннотация. Промышленное свиноводство — бурно развивающаяся отрасль животноводства России. Исследования показывают, что при использовании свиного навоза в качестве удобрения содержание органического вещества в изучаемых почвах повышается на 0,9—1,2%. При утилизации отходов происходит загрязнение черноземных почв, возникает реальная опасность загрязнения грунтовых вод нитратами, превышающими ПДК в лугово-черноземных почвах в 1,9 раза, и зафосфачивания черноземов типичных до повышенного уровня, а у луговочерноземных почв — до высокого.

Ключевые слова: свиной навоз, чернозем типичный, лугово-черноземные почвы, нитраты, зафосфачивание.

В настоящее время на территории Воронежской области производством свинины занимаются 44 крупных агрохолдинга. В 2019 г. поголовье свиней составляло 1 млн 429 тыс. голов, а в 2022 — 1 млн 925 тыс. [5]. Исследования проводились в зоне расположения 5 свинокомплексов на площади около 10 км². Приходится признать, что эти предприятия загрязняют окружающую среду отходами производства в виде навоза. Например, свинокомплекс мощностью 54 тыс. голов ежесуточно выбрасывает в атмосферу 578 кг аммиака, 3,1 кг сероводорода, 8 кг меркаптанов, 96 кг CO₂, 167 кг пыли и миллиарды микроорганизмов [4].

Бесподстилочный свиной навоз отличается от навоза КРС более высоким содержанием аммонийного азота и более низким значением рН. Главной причиной плохого качества бесподстилочного навоза является чрезмерное содержание в нем технологической воды, особенно, при удалении навоза гидросмывом (более 15 л в сутки на 1 голову). Влажность таких навозных стоков на существующих свиноводческих комплексах достигает 98,3—99,1 %, при том, что по ГОСТ 33830-2016 она должна быть ниже 92 %.

Внесение этих удобрений позволяет реутилизировать элементы, отчуждаемые из почвы с урожаем сельскохозяйственных культур [2]. В зависимости от мощности свинокомплексов выход жидкого навоза может варьировать от 192 тыс. м³ до 645 тыс. м³ [7]. То есть, для утилизации отходов потребуется большая площадь или существенное повышение доз. При этом действующие трубопроводные системы могут транспортировать жидкий навоз на расстояние 8—10 км, а с подкачивающими станциями — до 15 км. Однако в радиусе до 15 км внести навоз в почву чаще всего невозможно в связи с тем, что в этой зоне размещены населенные пункты [2, 5].

По сведениям Министерства природных ресурсов и экологии РФ и Департамента земельных ресурсов, свыше 2,4 млн га пахотных земель в стране относятся к сильно деградировавшим и утратившим свое плодородие в результате бесконтрольного применения бесподстилочного навоза [3]. Следует отметить, что внесение свежего навоза в почву запрещено, так как он представляет не только биологическую опасность, но и приводит к деградации почвы. В соответствии с нормами РД-АПК 1.10.15.02-17 свежий навоз должен храниться в навозохранилищах (лагунах) от 8 до 12 месяцев, затем подвергаться и следующим способам очистки: термическая сушка, химические методы, биотермическая обработка и компостирование, вермикокомпостирование, анаэробная переработка [2, 3, 4, 5].

Цель и задачи исследования — выявить последствия применения свиного навоза на агроэкологическое состояние черноземных почв; содержание в них органического вещества, подвижного фосфора, обменного калия и нитратного азота.

Условия и методы. Объектом исследований являлся комплекс черноземов типичных с луговочерноземными почвами на производственных пло-

Семена отечественных гибридов сахарной свёклы нового поколения

щадях ООО МТС «Агро», которое находится в Верхнехавском районе Воронежской области.

Особенностью объекта исследований является наличие комплексного почвенного покрова [1]. Хорошо развитый микрорельеф в виде западин разной площади и глубины вреза обусловил развитие комплекса черноземов типичных с лугово-черноземными почвами. Микрорельеф обусловливает перераспределение жидкой фракции свиного навоза по элементам микро-

рельефа, в результате которого в западины поступают дополнительные объемы отходов, формирующие его неоднородное распределение.

Для проведения исследований были заложены почвенные разрезы, три — на черноземах типичных и три — на лугово-черноземных почвах. В качестве контроля использовали целинную лугово-черноземную почву.

Образцы почв отбирали с глубины 1 метр с шагом 20 см. В лабораторных условиях определяли: гумус по Тюрину с фотометрическим окончанием (ОСТ 46 47-76); подвижный фосфор и обменный калий по Чирикову в модификации ЦИНАО (ГОСТ 26204); нитратный азот с ионоселективным электродом.

Результаты экспериментов и их анализ. На рисунке 1 отражена динамика содержания органического вещества в изучаемых почвах. Целинный участок расположен на границе поля № 1 (41 га), на котором заложены разрезы 1 и 2. Разрезы 4—7 заложены на поле № 2 (120 га). Разрез 4 заложен на части поля после проведения известкования в 2021 г. Образцы почв отбирались в октябре 2020—2022 гг. Синей пунктирной линией отмечено содержание органического вещества (ОВ), верхний уровень малогумусной градации которого составил 6 %. Зеленая пунктирная линия указывает на верхний уровень среднегумусной градации 8 %.

Согласно полученным данным (см. рис. 1), только чернозем типичный разреза № 2 относится к малогумусным почвам. Все остальные по содержанию ОВ в пахотном слое относятся к высокогумусным, что характерно для черноземных почв Верхнехавского района.

Изучение действия свиного навоза на содержание органического вещества в пахотном слое почв показало, что на целине в слое 0-20 см оно было достаточно стабильным. Неравномерное количество органики отмечено в разрезах черноземов типичных и лугово-черноземных почв. Так, на поле № 1 максимальное содержание органического вещества после внесения навоза отмечалось в $2022 \, \Gamma$., а на поле № $2-82020 \, \Gamma$.

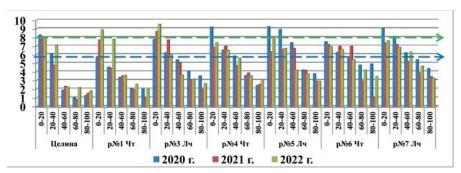


Рисунок 1. Влияние внесения свиного навоза на содержание органического вещества в изучаемых почвах

Среднее содержание органического вещества в слое 0-20 см на целине составило 8,11 %, амплитуда колебаний за три года -0,32 %, то есть можно утверждать, что оно было стабильным, в отличие от пахотного слоя изучаемых почв. В пахотном слое черноземов типичных среднее содержание органики по разрезам 1,4,6 составило 8,47,7,81 и 7,20 %, а амплитуда колебаний -1,12,2,39 и 0,57 % соответственно. В разрезах 3,5 и 7,12,2,39 и 3,57 % соответственно. В разрезах 3,5 и 3,57 м гомазатели составили 3,67,7,86 и 3,0 %, а амплитуда колебаний 3,57,570 и 3,571 и 3,572 соответственно.

Следует отметить более высокое содержание органического вещества в лугово-черноземных почвах. Это обусловлено перераспределением жидкой фракции свиного навоза по элементам микрорельефа даже при внутрипочвенном внесении, в отличии от поверхностного. Дополнительное количество жидкой фракции свиного навоза, поступающего в западины, обусловливает заметное повышение содержания ОВ в профиле лугово-черноземных почв. Но это не ухудшает агроэкологическое состояние изучаемых образцов.

Внесение жидкой фракции свиного навоза иначе влияет на содержание нитратов в изучаемых почвах (рис. 2). Красной пунктирной линией отмечен уровень ПДК по нитратам, которые в отличие от аммонийного азота не закрепляются почвенным поглощающим комплексом. При достаточном или избыточном увлажнении нитраты мигрируют с нисходящим током

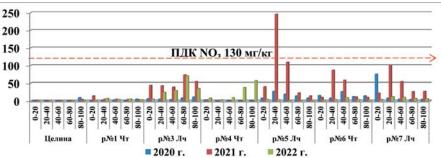


Рисунок 2. Влияние внесения свиного навоза на содержание нитратов в изучаемых почвах

ВУЛКАН, БУРЯ, БРИЗ, ВОЛНА, МОЛНИЯ, ПРИЛИВ, СКАЛА

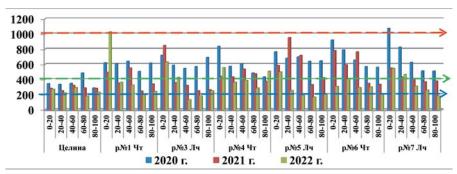


Рисунок 3. Влияние внесения свиного навоза на содержание подвижного фосфора в изучаемых почвах

влаги в нижнюю часть профиля и за его пределы. При высоком уровне грунтовых вод возрастает опасность загрязнения их нитратами, о чем свидетельствуют данные 2021 г., отражающие их максимальное содержание (см. рис. 2).

Если на целине содержание нитратов находится в пределах 0.8-10.0 мг/кг, то рядом на поле № 1 вчерноземетипичном оно возрастает до 3.0-14.8 мг/кг, а в лугово-черноземной почве — до 4.5-74.1 мг/кг. На поле № 2 содержание нитратов в черноземах типичных резко возрастает с 1.4-57.5 до 3.1-87.1 мг/кг, а в лугово-черноземных почвах увеличивается от 4.6-99.9 (разрез № 7) до 2.2-246 мг/кг почвы (разрез № 5), то есть превышает ПДК по нитратам почти в два раза.

Наши исследования по содержанию подвижного фосфора в изучаемых почвах показывают, что под влиянием внесения свиного навоза происходит развитие зафосфачивания изучаемых почв. Уровень обеспеченности подвижным фосфором и зафосфачивания можно оценить по данным таблицы 1 [9].

Данные по содержанию подвижного фосфора в изучаемых почвах позволяют дать оценку фосфатного состояния (рис. 3). Синей пунктирной линией отмечен уровень очень высокой обеспеченности подвижным фосфором (см. табл. 1), зеленой линией — уровень низкой степени зафосфачивания, а красная — уровень повышенной зафосфаченности.

Обеспеченность целинной лугово-черноземной почвы подвижным фосфором очень высокая (см.

Таблица 1. Шкала экологического нормирования подвижных форм фосфора, P_2O_5 , мг/кг (по Чумаченко И.Н., 1999)

Уровень обеспеченности		Степень загрязнения (зафосфачивания)	
Очень низкий	< 20	Очень низкая	251–500
Низкий	26-50	Низкая	501–750
Средний	51–100	Средняя	751–1000
Повышенный	101–150	Повышенная	1001–2000
Высокий	151–250	Высокая	2001–3000
Очень высокий	251-500	Очень высокая	>3000

табл. 1 и рис. 3). В слое 0—20 см она варьирует в пределах 273—347 мг/кг почвы. В пахотном слое содержание подвижного фосфора варьирует в пределах от 256—952 (разрез № 5) до 546—1075 мг/кг почвы (разрез № 7), а степень зафосфачивания изменяется от низкой до высокой.

В пахотном слое черноземов типичных содержание подвижного фосфора варьирует от 443—839 (разрез № 4) до 497—1028 мг/кг почвы (разрез № 1). Зафосфаченость черноземов типичных оценивается от

низкой до повышенной (см. табл. 1).

Следует помнить, что фосфор удобрений отличается большей подвижностью и доступностью для растений, чем природные фосфаты почвы. При систематическом и длительном внесении этих удобрений необходимо изменять соотношение между питательными элементами с учетом их остаточного действия: дозу фосфора следует уменьшать, а дозу азотных удобрений увеличивать.

Впервые понятие «зафосфачивание» почв было выдвинуто А.В. Соколовым в 1958 г. при исследовании обогащенности почв подвижными фосфатами при длительном внесении фосфорных удобрений [6]. Но до недавнего времени подавляющее большинство экспериментальных исследований и научных трудов было посвящено проблеме дефицита фосфорного питания растений и способам оптимального внесения фосфорных удобрений в почву.

Наши исследования показали, что длительное внесение жидкого свиного навоза обусловливает существенное повышение содержания подвижного фосфора и зафосфачивание изучаемых почв — до повышенного в черноземах типичных и высокого — в лугово-черноземных почвах. Но зафосфачивание как процесс еще недостаточно изучено. На содержание подвижного фосфора нет ПДК.

Внесение свиного навоза повышает также содержание обменного калия в изучаемых почвах (рис. 4). Красной пунктирной линией отмечен очень высокий уровень его содержания (180 мг/кг). На целине в слое 0—20 см оно варьирует в пределах 120—151 мг/кг почвы (в среднем 142 мг/кг), амплитуда колебаний составляет 31 мг/кг. В черноземе типичном (разрез № 1) содержание обменного калия в пахотном слое изменяется от 121 до 283 мг/кг (в среднем 176 мг/кг), а амплитуда колебаний достигает 162 мг/кг почвы. В лугово-черноземной почве (разрез № 3) содержание варьирует в пределах 144—276 мг/кг почвы (в среднем 220 мг/кг), амплитуда колебаний составляет 132 мг/кг.

Напомним, что участок целины находится на границе поля № 1, где заложены разрезы 1 и 3. На поле № 2 с разрезами № 4—7 содержание обменного калия

Семена отечественных гибридов сахарной свёклы нового поколения

в пахотном слое черноземов типичных и лугово-черноземных почв изменяется в очень широких пределах. Это обусловлено как тем, что поле разделено на три рабочих участка со своими наборами сельхозкультур, так и проведением в 2020 г. известкования на части поля, где заложен разрез № 4, а также разновременным внесением свиного навоза. Содержание обменного калия в черноземах типичных изменяется от 113—215 до 101—398 мг/кг почвы

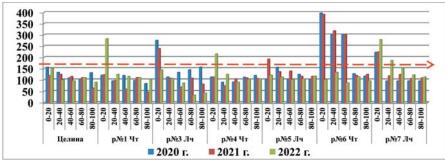


Рисунок 4. Влияние внесения свиного навоза на содержание обменного калия в изучаемых почвах

(в среднем 147 и 294 мг/кг) при амплитуде колебаний 102 и 207 мг/кг. Содержание обменного калия в лугово-черноземных почвах изменяется от 104—192 до 223—279 мг/кг (в среднем 138 и 242 мг/кг), амплитуда колебаний составляет 88 и 56 мг/кг почвы. За 1—2 года испытаний уровень обменного калия превысил 180 мг/кг почвы в пахотном слое черноземов типичных, а в черноземно-луговых почвах за 2—3 года.

Выводы. Внесение свиного навоза обусловливает повышение содержания нитратов в луговочерноземных почвах выше ПДК. При его длительном использовании существенно изменяется количество подвижного фосфора и зафосфачивание изучаемых почв до повышенного уровня в черноземах типичных и до высокого — в лугово-черноземных почвах. За 1—2 года наблюдений уровень содержания обменного калия в пахотном слое (более 180 мг/кг почвы) был превышен в черноземах типичных, за 2—3 года — в черноземно-луговых почвах, что является следствием внутрипочвенного перераспределения жидкой фракции свиного навоза по элементам микрорельефа.

Предложение производству. Для предотвращения перераспределения свиного навоза по элементам микрорельефа необходимо выполнять регулярную планировку полей.

Список использованной литературы

- 1. Ахтырцев, А.Б. Гидроморфные почвы и переувлажненные земли лесостепи Русской равнины: Дис. ... доктора биологических наук. Воронеж:, 2003. 223 с.
- 2. Брюханов, А.Ю. Проблемы обеспечения экологической безопасности животноводства и лучшие доступные методы их решения / А.Ю. Брюханов, Э.В. Васильев, Е.В. Шалавина // Региональная экология. 2017. № 1 (47). С. 37-43.
- 3. Еськов, А.И. Результаты многолетних исследований эффективности последействия бесподстилочного навоза / А.И. Еськов, С.И. Тарасов, Н.А. Тамонова // Плодородие. 2010.- № 6. С. 10-12.
- 4. Пилип, Л.В. Метод очистки воздуха от запахообразующих веществ свинокомплексов / Л.В. Пилип // Технологии и технические средства механизирован-

ного производства продукции растениеводства и животноводства. - 2019. - \mathbb{N} 4 (101). - C.137-146.

- 5. Поголовье свиней в Воронежской области ежегодно увеличивается. 2021. https://moe-online.ru/news/economy/1139400/ (дата обращения 25.10.2022).
- 6. Соколов, А.В. Зафосфачивание почв и последействие фосфорных удобрений / А.В. Соколов // Агрохимия. 1976. № 2. С. 3-6.
- 7. Рыбин, Р.Н. Влияние разных форм свиного навоза на продуктивность культур и агроэкологическую характеристику светло-серой лесной почвы / Р.Н. Рыбин. Автореф. канд. дисс. с.-х. наук. Казань, 2023. 21 с.
- 8. Шалавина, Е.В. Экологические проблемы отрасли свиноводства в России / Е.В. Шалавина // Теоретический и научно-практический журнал. 2017.- N 92. С. 165-172.
- 9. Чумаченко, И.Н. Аспекты исследования фосфорного режима оптимизации эффективности фосфорных удобрений / И.Н. Чумаченко // Совершенствование методологии исследований фосфатного режима почв, оптимизация фосфорного питания и баланса фосфора в агроэкосистемах: мат. межд. симп. М., 1999. С. 23-26.

Agroecological condition of black soils of Verkhnekhavsky district of Voronezh region during the disposal of pig manure

K.S. Nasonova, K.Y. Zotova, K.E. Stekolnikov

Summary. Industrial pig breeding is a rapidly developing branch of animal husbandry in Russia. The introduction of pig manure increases the content of organic matter in the studied soils by 0.9-1.2%. Waste disposal causes pollution of black soils, there is a real danger of groundwater contamination with nitrates exceeding the MPC in meadow-black soils by 1.9 times and phosphating of typical black to an elevated level, and meadow-black soils to a high level.

Key words. Pig manure, typical black soils, meadow-black soils, nitrates, phosphating.